

电功能水在果树上的运用

撰文/徐伟忠 陈银华 曾凡清*

摘 要:本文从物理农业的角度,论述了电 功能水在果树生产上的具体运用,详细介绍了电 功能水产生的机理, 电功能水的杀菌原理, 电功 能水在实践中的具体操作,包括强酸水与强碱水 的物理化学特性,病害防治,土壤改良,果蔬产品 的杀菌保鲜处理等与果树生产相关的技术措施. 让生产者对电功能水在果树上的运用有个概括 性的了解。

关键词:电功能水,物理防治,强酸水,强碱 水, 病虫害, 土壤改良, 果蔬保鲜, 农药残留

随着生活水平的提高,果品的无公害绿色栽 培已日显重要,特别是在农药防治病虫害上已被 科研与生产得到广泛的重视。当前农药种类之 多, 剂型之广, 可谓琳琅满目。这些农药虽然在 病虫害的防治上具有良好的效果, 但同时对环境 污染与果蔬上造成的残留也给人们带来了极大 的恐慌与危害。农药与食物中毒事件时有发生, 这就是化学农业带来文明的同时也带来了对人 类的自我危胁。农业专家们已在不断地探索寻 求一些低残留少污染的新型农药 - - 生物农药, 这种农药能够从某种程度上减少残留与危害,但 还不绝对的无害,到底大多品种还是化学合成 制剂,而且药效也表现较为缓慢。那么有什么技 术解决方案可以达到既没有任何残留又能达到 防病治虫的效果呢? 最近几年国内外纷纷地投入 物理农业与物理防治方面的研究, 企图运用物理 方法来解决虫害与病害问题. 通过多年的研究, 目前已形成了物理防治的一些新型技术体系与 装置, 如电场的治病灭菌与促长技术, 提高植物 抗病性与促进生长的声磁技术, 超声波的种子杀 菌处理技术, 远红外线的杀菌促长技术, 还有激

光杀虫技术等:这些技术对于杀菌防虫都起到了 一定的作用, 但在生产上大面积的使用与要达到 良好的效果也有点困难,针对这些问题,一种以 水为原料, 通过电解处理方法获取强酸水进行防 治的技术应运而生,它的运用在发达国家已蔚 然成风, 特别是在日本, 已在农业上得到了大面 积的推广, 而且形成了"电功能水农法", 针对各 种不同作物,采用不同的防治措施,已形成规范 化的操作体系, 而我国在这个领域的研究还刚刚 起步, 为了使农业生产者对这种独特的物理防病 技术有个大概的了解,本文从机理及实践运用上 进行阐述. 为果蔬生产者提供指导性的建议。

1.1 电功能水的生成原理及装置

电功能水也叫电解水,但又不同于普通电 解水, 它是利用水电解的原理, 通过专用的生产 装置,把水电解成具有强氧化性的酸水与强还原 性的碱水, 并运用这些水特有的物理化学性状进 行杀菌消毒与病害的防治, 在果树栽培病害防治 及贮藏保鲜上具有广泛的运用空间. 现就电功能 水的生成杀菌机理与果业生产上的运用作些介

水在电极的作用下,会被分解成OH根与H 离子,这些离子再与含有氯化钾水溶液中的氯 离子及钾离子反应生成亚次氯酸与氢氧化钾, 这个过程需在阴阳离子交换膜的作用下才能实 现,从而让化学反应形成的亚次氯酸根离子向 阳极富集,而氢氧根离子向阴极富集,这样就分 别在两个槽内形成了具有高电位的强氧化酸水 与高还原电位的强碱水,其生成与反应原理如 下:(见下面的化学反应方程式)

2、电功能水的杀菌与运用机理

普通的水通过加入 0.1% 氯化钾就形成了具

有较高导电率的电解质溶液,在电极的作用下 产生电解反应形成了具有(ORP 为+900--+1200mv)高氧化电位的亚次氯酸水,这种水的 PH 值通常在 3-2.7 以下,同时还生成具有强还 原电位(ORP-800 mv)的氢氧化钾溶液,这种 水的 PH 值通常达 10-13 以上。在农业生产上应 用较多的是利用酸水进行杀菌防病,其杀菌的 原理在于酸水的物理特性与化学特性,物理特 性是它具有高氧化电位,一旦与细菌真菌或病 毒接触后,它强制性地从生物膜上获取电子,而 改变细胞膜的正常电位与渗透性,使脂膜氧化 渗透性破坏,就像在细胞膜上穿了个孔,导致细 胞内容物外泄而致死,这个过程属于物理过程, 能在 1-10 分钟之内就达到很好的效果,所以在 运用上比化学杀菌的速度更快更彻底,而且不 会使病菌产生任何抗药性。其化学过程,就是为 病菌重建一个不适宜的强酸环境,从而起到了 病菌发育上的强烈抑制,大多病菌要求 PH 都是 在3以上,而强酸水可达PH2.7以下,从而达到 了抑菌效果,还有生成的酸水中亚次氯酸中的氯 离子也是一种杀菌剂,起到了抑杀作用,正是由 于这种综合的杀菌效应而使它比其它农用杀菌 剂有更好的防治效果。

而生成的另一种碱水也具有很广的用途,它 具有中和酸水改变环境酸碱度作用外, 还更为重 要的是它所含的氢氧化钾, 具有促进作物萌芽生 长与果实着色的作用, 它也被在农业生产上得到 充分的利用。

3、电功能水在果树上的运用

3.1 电功能水在果园土壤改良上的运用

果树的生长发育好坏与立地的土壤酸碱环 境密切相关, 过酸或过碱都会造成果树根系吸收

电解装置原理图

2CL CL2+2e CL+HO H++CL+HCLO 强酸水形成过程 OH-+K+ KOH 强碱水形成过程

化学反应方程式 电生功能水对葡萄炭疽病防治效果(p < 0.05)

O = 13 100 3 11 3 11 3 12 11 3 11 3 11 3 11		,
处理	病果率(%)	防治效果
百菌清处理组	46.60	28.32b
酸性水处理组	36.35	44.04a
先酸后碱处理组	44.00	32.24ab
无处理对照组	64.98	

中国果菜 2006 年第 3 期 9

矿质营养元素的障碍,如碱地易缺铁,酸地易缺 钾、磷、锌、镁等;特别是在南方的酸性极重红 黄壤,有些果园壤土的PH值在4.5以下,对于 柑桔等果树的优质生产带来障碍,常用大量施入 生石灰进行调整; 而北方旱区或海涂的盐碱地, 许多地块的 PH 在 8 以上, 也不适果树的生长, 因 为大多果树对 PH 值的范围以5.5-6.5 为好, 在 建园时要施入硫磺粉进行调节, 这些方法虽然也 起到了作用,但同时又会造成果树对矿质营养吸 收平衡的破坏或造成环境的二次污染, 另外, 改 造的成本也是较高, 针对这些 PH 值不适的果园。 参考日本土壤改良的经验, 还是以酸水来调节碱 地,碱水来调节酸土的方法较好,它除了能有效 纠正土壤 PH 值环境外, 最重要的是不会有任何 残留, 成本也是极为低廉。运用时也极为方便, 可灵活地进行浇施或灌溉调节,酸水的施用,还 可杀灭部份土传病菌与为土壤创造微电流环境, 大大降低果园的病菌基数. 使用时采用原药或稀 释施入皆可。

3.2 电功能水在果园病害防治上的运用

电功能水以其独特而强大的杀菌效果倍受 生产者青睐,在日本许多无公害的免农药果园都 是利用电功能水再结合生物杀虫技术进行果品 的安全生产, 彻底解决了化学农药残留所造成的 生态及健康危害,利用电功能水进行果园的封 园,可大大降低越冬病原菌的基数,生长季节利 用电功能酸水防治诸如桃疮痂病、黑星病、缩叶 病、穿孔病,柑桔上的疮痂病、溃疡病,梨树上 的黑斑病、锈病、轮纹病等都取得了极佳的防治 效果;特别是极易感病的葡萄,利用电功能水后 对于黑痘病、霜霉病、炭疽病等有比百菌清、多 菌灵等农药有更好的药效(试验结果如下表)。

但在使用时,除了每隔7-10天喷施一次外, 还需注意一些遇到强酸较为敏感的品种要推行 酸水碱水交替使用的原则,特别是定植不久的 幼树,通常可以采用喷酸水后,相隔30-60分钟 后再喷碱水,以避免酸危害,经日本近年推广运 用表明绝大多数果树是没有任何药害表现对人 体也无任何皮肤及嗅觉的刺激与敏感现象,日 本山梨县的果农们已把电功能水作为一种主要 的防病措施,以实现果树的减农药或免农药栽 培。

3.3 电功能水在提高果实品质上的运用

电功能水发生装置生产出来的水,除了其 中酸水有极佳的杀菌功能外,另外一半的碱水 也是果树生产上一种很好的根外追肥用水 , 具 有还原电位的氢氧化钾水,除了能促进芽的萌 发枝条生产外,在果实外观品质改善上效果也

极为明显,可以大大提高果品的糖度与着色度。

3.4 电功能水在贮藏保鲜上的运用

果蔬的贮藏保鲜也是果业生产中较为重要 的一个环节,目前我国的保鲜技术极为落后,是 导致果农增产不增收的一个主要原因,而大型 的保鲜库及新型技术的投资较大,一般果农又 难以实施,只是采用常温下的化学杀菌保鲜法, 致使效果不佳及化学残留严重。而利用电功能 水处理进行果实采前的留树处理或采后的集中 处理,可大大提高劳动效率与保鲜效果,对于大 型的保鲜企业,入库时常用大量的化学杀菌剂 处理,既影响果品的自然外观又带业污染及残 留,而改用电功能水后除了能瞬息杀死果实表 面的各种病菌外,还能快速还原回普通的水,没 有任何的环境污染与果实残留,是当前最为理 想的保鲜措施。

现以极不耐藏的草莓为试验材料说明它的 杀菌保鲜效果,冷藏前用强酸性水和强酸性水 加氯化钙处理液浸泡草莓 10min (以无处理作为 对照),然后在0 下冷藏12天,观察草莓品质 的变化。结果表明,用强酸性水和强酸性水加氯 化钙处理液浸泡草莓,能显著抑制草莓的呼吸 作用,抑制多聚半乳糖醛酸酶及羧甲基纤维素 酶的活性,从而有效保持了果实的硬度,并极大 地减少了腐烂。其中强酸性水处理组12天后好 果率为100%,而对照组(不处理)的好果率仅为 85%。这说明用强酸性水对果蔬等进行洗净处 理,不仅有很好的洗涤、杀菌消毒作用,而且可 延长保鲜期。

3.5 在生产无公害绿色水果上的运用

借鉴日本经验生产免农药果品成为可能, 日本果农在利用电功能水杀菌技术进行病害防 治外,同时又结合中药制剂的杀虫土配方,达到 无化学的防治效果,真正生产出没有任何残留 的无公害果品。这种制剂在日本叫"汉方药",在 无公害果品生产上颇受关注,其实质上就是利

用中草药配置的一种植物源生物农药,如将黄 柏、陈皮、甘草、薄荷、大蒜、辣椒、木酢液、 黄连等按一定的比例直接加工后使用,具有很 强的刺激气味能有效地杀死红蜘蛛、蚜虫等昆 虫,从而达到病虫皆治的效果。

4、使用的方法与注意事项

电功能水的使用极为简单,把装置生产的 酸水或碱水直接喷散即可,使用时最好选择湿 度较低的晴天,因为如在高湿度的阴雨天使用 除了会影响药效外,关键会阻碍功能水的蒸腾 与还原速度,对于一些敏感的品种会造成轻微 伤害。除此以外,生产出来的电功能水最好在密 闭的塑料容器内贮藏,这样药效最佳,如果生产 方便的话,最好是防治时边生产边施用,因为刚 生产出来的酸水或碱水它的氧化电位是最高的, 在开放的环境下久置会使电位大大降低,即使 酸碱度变化不大,但效果的影响还是比较明显 的;另外、电功能水与其它农药混合时要注意, 千万不能把酸性的农药与碱水混合,也不能用 碱性的农药与酸水混合,否则会影响药效,但如 果酸性农药用酸水溶解,除了能提高溶解分散 度外还可以提高农药在叶片表面上的渗透吸收 性,大大提高药效。

电功能水在果树产业上的运用,在我国刚 刚起步,而在国外发达的日本已有多年的历史, 它们已经形成电功能水农法,在生产上规范化 标准化的推广应用。我们可以在借鉴国外经验 的同时,结合我国果业生产实际状况,迅速开展 相关技术的研究与推广运用。为我国果业走向 的无公害生产,为农业的可持续发展发挥电功 能水最大的作用,它属于物理农业领域,属于物 理杀菌的过程,对于环境污染及残留可以勿需 考虑,对于生产成本来说也可大大降低,具有极 为广泛的运用空间与重大的生产意义。

* 作者单位:浙江省丽水市农科所农业智能化快繁中心

10 2006 NO .3. CHINA FRUIT & VEGETABLE